必威体育娱乐app

栏目导航
新闻资讯
公司动态
行业资讯
联系我们
服务热线
手机:
地址:
当前位置:主页 > 新闻资讯 >
丰田对抗燃料电池中的化学衰减技术解析
浏览: 发布日期:2019-06-11

目前,燃料电池的寿命主要取决于电解质膜的寿命,而影响电解质膜寿命的因素主要有以下三种:(1)化学衰减;(2)机械衰减;(3)热衰减。

丰田对抗燃料电池中的化学衰减技术解析

1. 化学衰减机理


化学衰减主要是指高分子电解质膜被自由基或者离子污染。自由基主要来自于氧化还原反应过程中产生的H2O2或者·OH、·OOH自由基,自由基会攻击高分子电解质膜的端基或者主链,发生降解反应,使得电解质膜变薄甚至穿孔。离子污染主要来自于燃料电池其他零部件溶解的离子(如双极板)或者来自外部(如空气)的离子污染源,电解质膜的基团被杂质离子交换,导致电解质膜更容易被自由基攻击,发生劣化。尤其是存在Fe2+时,H2O2与Fe2+发生芬顿反应,大大加强了氧化性,对高分子电解质膜造成更大的损伤。此外,自由基攻击电解质膜而产生的劣化产物可能引起催化剂中毒,导致燃料电池性能大幅度下降。


为了解决燃料电池的化学衰减问题,可以采用高纯度材料制造燃料电池部件,同时要注意在制造工序中避免引入杂质离子。此外,还需要在膜电极组件中添加自由基消除剂(猝灭剂),提高燃料电池的耐久性。

丰田对抗燃料电池中的化学衰减技术解析

2. 解决化学衰减的现有技术


现有技术公开了利用铈离子、银离子等单种离子作为自由基消除剂的方法,但是这些离子会阻碍质子和水的扩散,并且这些离子容易与质子进行离子交换,降低了燃料电池的导电性。此外,这些离子在燃料电池pH值较高的部分容易形成氢氧化物或者氧化物沉淀,从而失去了作为自由基消除剂的功能。若这些离子被还原而变成金属析出,会影响催化剂层的电极反应。


3. 丰田解决化学衰减的技术方案


为了解决上述问题,降低燃料电池电解质膜的化学衰减,提升电解质膜的使用寿命,丰田在最新公开的一篇专利中(JP2019083123A)公开了一种利用两种不同的自由基消除剂(分别为主自由基消除剂和副自由基消除剂)来消除自由基的技术,主自由基消除剂用于将自由基还原为离子,同时自身从还原体(A)变为氧化体(A),副自由基消除剂用于将主自由基消除剂的氧化体(A)还原为还原体(A),同时副自由基消除剂被氧化为氧化体(B),并且氧化体(B)也可以被膜电极组件内的还原剂(如氢、电解质的分解生成物即甲酸等)还原为还原体(B)。由此,只需要小剂量的自由基消除剂就可以有效的消除膜电极组件中的自由基,并且由于副自由基消除剂作为助催化剂用于再生主自由基消除剂,通过两种自由基消除剂共存提高了主自由基消除剂的再生速度,提高了主自由基消除剂的利用效率。